Molt regulation in green and red color morphs of the crab Carcinus maenas: gene expression of molt-inhibiting hormone signaling components.
نویسندگان
چکیده
In decapod crustaceans, regulation of molting is controlled by the X-organ/sinus gland complex in the eyestalks. The complex secretes molt-inhibiting hormone (MIH), which suppresses production of ecdysteroids by the Y-organ (YO). MIH signaling involves nitric oxide and cGMP in the YO, which expresses nitric oxide synthase (NOS) and NO-sensitive guanylyl cyclase (GC-I). Molting can generally be induced by eyestalk ablation (ESA), which removes the primary source of MIH, or by multiple leg autotomy (MLA). In our work on Carcinus maenas, however, ESA has limited effects on hemolymph ecdysteroid titers and animals remain in intermolt at 7 days post-ESA, suggesting that adults are refractory to molt induction techniques. Consequently, the effects of ESA and MLA on molting and YO gene expression in C. maenas green and red color morphotypes were determined at intermediate (16 and 24 days) and long-term (~90 days) intervals. In intermediate-interval experiments, ESA of intermolt animals caused transient twofold to fourfold increases in hemolymph ecdysteroid titers during the first 2 weeks. In intermolt animals, long-term ESA increased hemolymph ecdysteroid titers fourfold to fivefold by 28 days post treatment, but there was no late premolt peak (>400 pg μl(-1)) characteristic of late premolt animals and animals did not molt by 90 days post-ESA. There was no effect of ESA or MLA on the expression of Cm-elongation factor 2 (EF2), Cm-NOS, the beta subunit of GC-I (Cm-GC-Iβ), a membrane receptor GC (Cm-GC-II) and a soluble NO-insensitive GC (Cm-GC-III) in green morphs. Red morphs were affected by prolonged ESA and MLA treatments, as indicated by large decreases in Cm-EF2, Cm-GC-II and Cm-GC-III mRNA levels. ESA accelerated the transition of green morphs to the red phenotype in intermolt animals. ESA delayed molting in premolt green morphs, whereas intact and MLA animals molted by 30 days post treatment. There were significant effects on YO gene expression in intact animals: Cm-GC-Iβ mRNA increased during premolt and Cm-GC-III mRNA decreased during premolt and increased during postmolt. Cm-MIH transcripts were detected in eyestalk ganglia, the brain and the thoracic ganglion from green intermolt animals, suggesing that MIH in the brain and thoracic ganglion prevents molt induction in green ESA animals.
منابع مشابه
Methyl farnesoate couples environmental changes to testicular development in the crab Carcinus maenas.
Carcinus maenas males have two major color phases. Green-phase males molt frequently and tend to live in brackish estuaries during the summer. After becoming red-phase males, they molt infrequently, have higher mating success, and live in cooler, deeper water. We found profound differences between these two phases in the way salinity and temperature affect hemolymph levels of methyl farnesoate ...
متن کاملA comparison of the methods of molt staging according to Drach and to Adelung in the common shore crab, Carcinus maenas.
Molt stages of juvenile Carcinus maenas were determined independently according to the methods of Drach and of Adelung. W ith the exception of stage DO the two systems agree rather wrell over the whole intermolt cycle. The molting hormone contents of animals regenerating several limbs and whose molt stages were determined according to Drach are in the same ranee as the values published by Adelung.
متن کاملFunctional Characterization and Signaling Systems of Corazonin and Red Pigment Concentrating Hormone in the Green Shore Crab, Carcinus maenas
Neuropeptides play a central role as neurotransmitters, neuromodulators and hormones in orchestrating arthropod physiology. The post-genomic surge in identified neuropeptides and their putative receptors has not been matched by functional characterization of ligand-receptor pairs. Indeed, until very recently no G protein-coupled receptors (GPCRs) had been functionally defined in any crustacean....
متن کاملCrustacean molt-inhibiting hormone: structure, function, and cellular mode of action.
In Crustacea, secretion of ecdysteroid molting hormones by Y-organs is regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide neurohormone produced by neurosecretory cells of the eyestalks. This article reviews current knowledge of MIH, with particular emphasis on recent findings regarding the (a) structure of the MIH peptide and gene, (b) levels of MIH in eyestalks and he...
متن کاملEcdysteroids Regulate the Levels of Molt-Inhibiting Hormone (MIH) Expression in the Blue Crab, Callinectes sapidus
Arthropod molt is coordinated through the interplay between ecdysteroids and neuropeptide hormones. In crustaceans, changes in the activity of Y-organs during the molt cycle have been regulated by molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). Little has been known of the mode of direct effects of ecdysteroids on the levels of MIH and CHH in the eyestalk ganglia durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 217 Pt 5 شماره
صفحات -
تاریخ انتشار 2014